Exercise 8

Suppose T is a triangle formed by placing three points on a circle, two of which lie on the circle's diameter. Use the previous problem to show T is a right triangle.

Solution

Suppose there are three points on a circle, two of which are on the diameter. Let this circle lie in the $x y$-plane so that the diameter is along the y-axis.

Draw the vector from $\left(x_{0}, y_{0}\right)$ to $(0,0)$ and the vector from $\left(x_{0}, y_{0}\right)$ to $(0,2 R)$. Call these vectors \mathbf{v}_{1} and \mathbf{v}_{2}, respectively.

$$
\begin{aligned}
& \mathbf{v}_{1}=(0,0)-\left(x_{0}, y_{0}\right)=\left(-x_{0},-y_{0}\right) \\
& \mathbf{v}_{2}=(0,2 R)-\left(x_{0}, y_{0}\right)=\left(-x_{0}, 2 R-y_{0}\right)
\end{aligned}
$$

The equation of the circle is $x^{2}+(y-R)^{2}=R^{2}$, so the point that isn't on the diameter satisfies

$$
\begin{gathered}
x_{0}^{2}+\left(y_{0}-R\right)^{2}=R^{2} \\
x_{0}^{2}+y_{0}^{2}-2 y_{0} R+R^{2}=R^{2} \\
x_{0}^{2}=2 y_{0} R-y_{0}^{2} \\
x_{0}=\sqrt{y_{0}\left(2 R-y_{0}\right)} .
\end{gathered}
$$

As a result,

$$
\begin{aligned}
& \mathbf{v}_{1}=\left(-\sqrt{y_{0}\left(2 R-y_{0}\right)},-y_{0}\right) \\
& \mathbf{v}_{2}=\left(-\sqrt{y_{0}\left(2 R-y_{0}\right)}, 2 R-y_{0}\right) .
\end{aligned}
$$

Take the dot product of these two vectors.

$$
\begin{aligned}
\mathbf{v}_{1} \cdot \mathbf{v}_{2} & =\left[-\sqrt{y_{0}\left(2 R-y_{0}\right)}\right]\left[-\sqrt{y_{0}\left(2 R-y_{0}\right)}\right]+\left(-y_{0}\right)\left(2 R-y_{0}\right) \\
& =y_{0}\left(2 R-y_{0}\right)-y_{0}\left(2 R-y_{0}\right) \\
& =2 R y_{0}-y_{0}^{2}-2 R y_{0}+y_{0}^{2} \\
& =0
\end{aligned}
$$

This means that \mathbf{v}_{1} and \mathbf{v}_{2} are perpendicular and form a right triangle.

